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Gaussian basis sets for use in relativistic molecular calculations are developed 
for atoms and ions with one to ten electrons. A relativistic radial wavefunction 
coupled to an angular function of /-symmetry is expanded into a linear 
combination of spherical Gaussians of  the form r I exp (-ar2). One set of 
basis functions is used for all large and small components of  the same angular 
symmetry. The expansion coefficients and the orbital exponents have been 
determined by minimizing the integral over the weighted square of  t he  devi- 
ation between the Dirac or Dirac-Fock radial wavefunctions and their analyti- 
cal approximations.  The basis sets calculated with a weighting function 
inversely proport ional  to the radial distance are found to have numerical 
constants very similar to those of their energy-optimized non-relativistic 
counterparts.  Atomic sets are formed by combining/-subsets .  T h e  results of  
relativistic and non-relativistic calculations based on these sets are analyzed 
with respect to different criteria, e.g. their ability to reproduce the relativistic 
total energy contribution and the spin-orbit  splitting. Contraction schemes 
are proposed.  
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1. Introduction 

The linear expansion of one-electron wavefunctions into a set of  basis functions 
[1] has become the standard method of  obtaining approximate solutions of  the 

* Dedicated to Prof. Dr. A. Neckel on occasion of' his 60th birthday 
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Schr6dinger equation for molecular systems within the SCF or the MC-SCF 
approach. Basis sets covering a wide range of  accuracy have been elaborated for 
the most commonly used basis functions, namely Gaussian type functions [2, 3] 
and Slater type functions [4], and a large amount of experience in choosing basis 
sets has been accumulated [5, 6]. In striking contrast, relativistic molecular 
calculations based on the linear expansion method have been reported only in 
1980 [7-11] and have remained scarce [12-19]. A main concern of these contribu- 
tions was to demonstrate and to overcome problems which arise when the Dirac 
equation is expanded into some basis of conventional functions. These problems 
are not caused primarily by the increased numerical difficulties posed by the 
four-component Dirac equation in comparison with the one-component Schrtdin- 
ger equation. They have two origins: 

(1) The Dirac equation expanded into some incomplete basis set does not reduce 
to the representation of the Schr/Jdinger equation in the limit of an infinite velocity 
of  light [20]. Hence, due to different basis set truncation errors in the relativistic 
and the non-relativistic calculations it is difficult to extract the relativistic effects 
at all. 

(2) Negative energy state solutions may be admixed to the electronic wavefunc- 
tion, when the Dirac Hamiltonian is used instead of  a projected Dirac Hamiltonian 
[21-23]. 

Besides these fundamental problems, several difficulties of predominantly tech- 
nical nature occur which are not encountered in the non-relativistic case: 

(1) The number of atomic radial functions to be approximated is almost quadru- 
pled since each relativistic one-electron state is represented by two radial functions 
and each state with angular momentum quantum number l > 0 is relativistically 
split. 

(2)  The radial wavefuiactions of  the states with a total angular momentum 
quantum number j = �89 become infinite at the origin. 

(3) There are more radial functions than in the non-relativistic case which are 
coupled to the same angular function and which have interlacing nodes. 

(4) New types of functions with an pre-exponential factor r (~-1~ occur. 

(5) Basis functions have to be included into the atomic set with a maximal/-value 
which is larger by one compared with the non-relativistic case. 

Thus, the greater complexity in the functional behaviour requires large and flexible 
basis sets and the development of computationally economic, i.e., short and 
accurate sets gains importance. A further aspect of the construction of relativistic 
basis sets is the fact that the total energy can no longer serve as a guideline as 
is usual in the non-relativistic case since the Dirac Hamiltonian is not bounded 
from below. 

In the following, relativistic Gaussian basis sets are developed for the atoms of  
the first and second row by expanding the relativistic atomic radial wavefunctions 



Relativistic Gaussian sets for the atoms hydrogen to neon 167, 

into linear combinations of  spherical Gaussians of  the form r 1 exp ( -a r2) .  The 
parameters of  these expansions, the orbital exponents and the linear combination 
coefficients, are obtained from a least-squares criterion, namely the minimized 
weighted square of the deviation between the exact function and its analytical 
approximation. Since relativistic effects on the wavefunction are small for low 
atomic numbers, a primary aim is to obtain basis sets which enable one to utilize 
a part of the acquired knowledge gained from non-relativistic calculations. In 
comparison with other attempts reported so far where either Slater type functions 
(STFs) [20, 24, 8, 25, 13, 14, 26-30] or Gaussian type functions (GTFs) [31, 9, 
12, 16, 32-35] have been used as basis functions, importance is given to the 
systematic generation of a large number of sets of different expansion lengths 
for each atom. 

The paper is divided into six sections. In Sect. 2, some well-known properties of 
relativistic wavefunctions for one- and many-electron atoms are reviewed. The 
expansion of  the radial wavefunctions into spherical Gaussians and the least- 
squares criterion are formulated in Sect. 3. The dependence of the basis set 
parameters on the premises of the least-squares approach such as different choices 
of weighting functions or expansion lengths is analysed in Sect. 4 for hydrogen 
and helium. In order to appraise the quality of the various basis sets relativistic 
calculations are performed. They are based on two approaches which at least 
partially resolve the problems which arise from a straightforward expansion of 
the Dirac Hamiltonian into an incomplete set of basis functions (for a review 
see [36]). In the large-c approach [8, 9, 11] the relativistic results are compared 
with those calculated using the limiting fbrm of the Dirac equation expanded 
into an incomplete set; this limiting form may be obtained either numerically 
[8] - by setting the velocity of  light c equal to a large number in the computer 
p rogram-  or analytically [9, 11]-  by performing the limiting process c-~ oo. In 
the modified kinetic energy approach [15] the matrix representation of the 
relativistic kinetic energy operator ~/~ is replaced by a modified one. This rep- 
resentation is constructed such that the modified Dirac-Fock (DF) equations are 
exactly reduced to the Har t ree-Fock-Roothaan (HFR) equations in the limit 
c - co. The generalization of the fit procedure appropriate for the atoms Li to Ne 
is formulated in Sect. 5. Subsequently, the construction of  atomic sets from 
/-subsets is illustrated for Ne; among the various combinations a small, a medium 
and a large set are selected. Contraction schemes adequate for calculations by 
the modified kinetic energy approach are proposed. Finally, some conclusions 
are summarized in Sect. 6. 

The present contribution is mainly intended to describe the method of obtaining 
the basis sets, and to analyse some of the results for atomic calculations where 
these sets have been applied. The numerical constants of  the sets for the atoms 
H to Ne are documented in a monograph [37] which is available upon request 
from the author. There are also basis sets compiled for hydrogen-, helium- 
and neon-like positive ions in order to demonstrate the dependence of the param- 
eters on the nuclear charge; this subject, however, will not be treated in the 
following. 
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2. Some properties of relativistic one-electron wavefunctions for central fields 

The components of the relativistic one-electron wavefunctions for a spherically 
symmetric potential can be factorized into a radial and an angular part (see e.g. 
[38]) according to 

- \ i r - l Q ,  tj(r) X-K,,,(O, 6)]"  

The radial function P of the large component r and the radial function Q of 
the small component r  are classified by a label n and a combined label lj which 
for l > 0 distinguishes the relativistic shells j = l - 1 and j = l + �89 originating from 
the non-relativistic shell/. The angular functions X are classified by the quantum 
numbers K and mj, where K is related to / j  in the following way: 

K = 1, if j =  l-�89 

K = - ( / + 1 ) ,  if j = / + ~ .  (2) 

Each component of the two-component spinors X is given by a spherical harmonic 
Y,,~, multiplied by a Clebsch-Gordan coefficient. The degree A of the spherical 
harmonic is determined by K according to A =j+�89  sgn (K), where sgn (K) = K/I I. 
The symbol A has been introduced in order to distinguish between the angular 
symmetry of a single spinor in (1) and a state symbolized by lj. The values of 
appropriate for the large and the small components for the lowest relativistic 
central field states are indicated in Table 1 by specifying the symmetry symbols 
s,p, d , . . .  which correspond to A = 0, 1, 2 , . . . ,  respectively. It is important to 
note that members of the set Yxm~ enter into the angular functions of several 
ditterent relativistic states. 

In the case of hydrogen-like atoms with point-like nucleus of charge Z, the 
functions P and Q can be expressed by confluent hypergeometric functions (see 
[39]). In the case of many-electron systems, P and Q are solutions of the DF 
equations. They have been calculated by means of Desclaux's program [40] 
assuming a point-like nucleus and the LS average of configurations [41]. 

Close to the origin the radial functions can be represented by power series which 
are of similar form for the large and the small components: 

P, ij_ rVmin-l(po + p l r + .  . .) (3) 
r 

Q.lj= rV~ -l(qo+ qlr+" �9 ") (4) 
r 

Table 1. Angular symmetry of the large and small components of relativistic central field states 

State classification sl/2 Pt/2 P3/2 d3/2 d5/2 f5/2 f7/2 

Quantum number r -1  +1 - 2  +2 -3  +3 - 4  
Large component s p p d d f f 
Small component p s d p f d g 
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The power 'Ymin and the coefficients p~ and q~ depend on the central field potential 
which comprises the contribution from the nucleus and, in the case of a many- 
electron system, the mean field of all electrons. Table 2 gives the parameters of 
the power series (3) and (4) for two cases, a point-like nucleus and an extended 
nucleus [42-44]. 

3. The expansion of relativistic radial wavefunctions into spherical Gaussians and 
the least-squares criterion 

3.1. The expansion scheme 

The functions P and Q satisfy a common normalization condition 

fo~{P~tj+ Q2,tj } dr = 1, (5) 

but for their use in the fit procedure each of them individually has been renormal- 
ized to unity. Such a renormalized large component wavefunction P.~j/r is denoted 
by d+(r) and a renormalized small component wavefunction Q,~j/r by d- ( r ) ;  
the superscript ~ is employed if no particular component is addressed. In the 
following, the expression orbital will be used for d~:(r), with the specific notation 
l s  +, l s - ,  + 2pl/2, 2p[/2, and so on; the expression radial function will be reserved 
for rd:~(r), with the specific notation P~+, Q~,-, and so on. 

An orbital d ~ characterized by the labels n/j and coupled to a spherical harmonic 
of degree A is approximated by a function g* of  the following form: 

re(x) 

g '~(r )  = N L c , (n l j ,  A ) t h i ( a , ,  A, r ) .  (6)  
i=1 

Table 2. Relativistic radial wavefunctions for central field states: power series solutions close to the 
origin for the large component ,  rVm~n--~[p o + Pl r] (upper row) and the small component ,  r'rmln-l[ q0 q- q~ r] 
(lower row) 

Point-like nucleus Extended nucleus 
Angular  

State K symm. "~min- 1 a Coefficients a Train- 1 Coefficients 

ls~/2 - 1  s -122/2 1 - Z  0 1 0 
p -12/2 wr./3 0 1 

2pl/2 +1 p _122/2 122 4 Z / 3  0 0 1 
s 212 - 4 Z ~ / 2  1 0 

2p3/2 - 2  p 1 - 122/4 1 - Z / 2  1 1 0 
d -12/4 w12/5 0 1 

3 d3/2 +2 d 1 - 122/4 122 8 Z / 5  1 0 1 
p 4~ -8Z12/5 1 0 

3d5/2 - 3  d 2-1~2/6 1 - Z / 3  2 1 0 
f -12/6 w~/7 0 1 

a Ymin and the coefficients have been expanded into a power series in 1/c and only the leading terms 
are recorded 

Abbreviations: 12 = Z / c ;  w = {z/l~l-(~-Vo/Z)t', Vo= l imr.o  V,(r), where V e is the mean  field of  
all electrons [20] 
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The basis functions of  the set {4)} are normalized spherical Gaussians 

~bi( Oli, A, r )  = 1: i e-'~,r2rX (7) 

with 

f 2(x+5/2) )1/2 
_ ~ _ _ _  ~ _ ~ 2 ~ + 3 ) / ,  ( 8 )  

v , -  [F(A + 3 / 2 ) J  ~ '  " 

The ~bi do not depend explicitly on n, but an implicit dependence is introduced 
by approximating orbitals differing in n by different sets of coefficients. The 
function N normalizes g~ to unity, 

fo ~{g~:}2r 2 = 1, (9) dr 

and is given by 

{ ~ ^ (2A+3)/4) 1/2 m 4 t t i t t  j 
N = I  ~= c~ + ~ ~, c, cj - - - - - - ~  ' (i0) 

The explicit factor r * in (7) ensures that a relativistic one-electron wavefunction 
can be expanded into a set of  Cartesian Gaussians C(a~, A, ~) of the form 

C(a , ,  A, ~) = xty"z  v e -~''~ (11) 

with A = t + u + v. Hence, in the following basis functions with A = 0 are referred 
to as s-Gaussians, those with A = 1 as p-Gaussians, and so on. However, these 
basis functions which allow a correct description of the angular symmetry of the 
spinors by Cartesian Gaussians show several deficiencies for small values of r. 
They are unable to represent properly the eigenfunctions for the central field 
with point-like nucleus in three aspects: 

(1) Since ym~< 1 for IK] = 1, the power series solutions (3) and (4) approach 
infinity whereas the approximations (6) remain finite as r tends to zero. The 
consequences arising from the factor r ~'m~-I a r e  most pronounced for the states 
with K = :;1, i.e. ns1/2 and np~/2. However, for low values of  ff = Z / c ,  the approxi- 
mation r ~ 'm~-I --- e x p ( - � 8 9  2 In r) holds. Hence, this factor deviates from a constant 
only within a region which is comparable with the size of  the nucleus with radius 
R ~-r~A ~/3, where A is the nuclear mass and re-~ (2.65-2.84) • 10 -5 Bohr [45]. 

(2) More severe than the neglect of a fractional power Y~i~ is the deficiency in 
the limiting behaviour of the small components for states with K < 0. This is due 
to the fact that a power r ~ is used in the expansion (6) whereas r x-1 is demanded 
(see Table 2). Numerical examples given in Sect. 4.1 will show that basis functions 
tk~ with very large exponents are needed to correct for this deficiency. Hence, 
these central field functions with pre-exponential factor approximated by r ( x - l )  

will be called "hard"  functions. They are represented by "normal"  functions of 
the same symmetry A even if a large number of  them is needed. 

(3) "Hard"  functions are furthermore required to represent the large components 
for states with K > 0 (see Table 2). However, inspection of  the coefficients of the 
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power series expansion shows that Po is smaller than Pl by a factor ~2 and is 
negligible for small r and low Z. 

The aforementioned deficiencies of the functions (7) turn out to be much less 
important, if the finite size of the nucleus is taken into account. In that case the 
power series solutions of all large and small components close to the origin 
[42-44], which are given in Table 2, can be represented exactly by the basis 
functions (7). Since the region where the "hard"  small components have to be 
approximated by functions with large exponents starts only at r values comparable 
with those of  the nuclear radius, the neglect of  a fractional power and of the 
leading power (h - 1) are less important, at least for low Z values. Indeed, it has 
been found that smaller basis sets are sufficient to calculate relativistic energy 
effects when an extended nucleus is assumed [35]. 

3.2. The least-squares criterion 

The coefficients c = cl, c2, . . .  Cm and the exponents at =Otl, t~2,...  ~m of the 
expansion (6) will be determined by an extremal condition: the integral over the 
squared deviation 8~= g ~ - d  :~ is required to be a minimum, 

f; F(e, eL) = w(r)6~:(r)2r 2 dr-~ minimum, (12) 
rain 

subject to the constraint that g~ remains normalized according to (9). The squared 
deviation is weighted by a function w(r) to be specified later. The integration is 
performed over a shell extending from rmin to infinity but it excludes a small 
region around the origin somewhat larger than the size of  the nucleus. A least- 
squares criterion analogous to (12), but with the choice rmin = 0, has been used 
previously to determine parameters of basis sets, e.g., those of GTFs approximat- 
ing STFs [46-49] or those of even-tempered sets approximating SCF wavefunc- 
tions [50]. 

Details on the minimization of the functional F and on the non-linear minimum 
search procedure are given in [37]. 

4. Gaussian basis sets for hydrogen and helium 

4.1. General behaviour of the analytical approximations 

Qualitative information on the basis sets can be gained by displaying the orbital 
exponents for sets of different size in a common diagram. Plots of  In a values 
which were obtained for the hydrogen orbitals ls  § and I s -  with a weighting 
function w -- 1/r are shown in Figs. 1 and 2. The basis functions -2 up to 14 s- 
and 2 up to 18 p-Gaussians - are numbered such that the first member has the 
largest exponent;  the values of the exponents belonging to a given expansion are 
connected by straight lines. 

First, consider the dashed base lines connecting the smallest exponents a+,, or 
am of each set. When the ordinate in one of the diagrams is shifted, the two base 
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Fig. 1. Basis sets for the large component  of  the 
hydrogen ground state wavefunction: logarithm 
of  the orbital exponents a in dependence on the 
number  of  s -Gauss ians  in a set; the values for a 
set are connected by straighz lines 
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Fig. 2. Basis sets for the small component  of  the 
hydrogen ground state wavefunction: logarithm 
of  the orbital exponents ct in dependence on the 
number  of  p-Gauss ians  in a set; the values for a 
set are connected by straight lines 
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Fig. 3. Hydrogen atom: approxima- 
tion of'the large component orbital I s  + 
( ) by 3 s-Gaussians ( . . . .  ) and 
10 s-Gaussians (. �9 .) 
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lines almost coincide. Thus, the ratio a ~ / a  ~ is close to a constant value, namely 
= 0.5, corresponding to a ratio rls/~2p = (O~p/Ols) 1/2X 3 / 4 =  1 of the mean radii of 
the outermost functions. Starting from the points at the base lines, the line 
segments linking the members of the same set first rise with almost constant 
slope, but then gradually bend upwards. Thus, among the smallest exponents the 
values for adjacent members are related by an almost constant factor as is 
characteristic for an even-tempered basis set [51] while the values of the larger 
exponents deviate increasingly from a rigid geometric series. The slope of the 
line segments is smaller for the large component than for the small one, so that 

§ 
for the first member of each set the value of a~- is much larger than that of a~. 
Thus, the innermost basis functions of the small component are strongly decaying 
and approach very much a /~-like character. The different behaviour of the 
approximations for the large and small components is illustrated in Figs. 3 and 
4, respectively. 

When the large component is expanded into 3 s-Gaussians, the approximation 
g§ deviates from ls  + in the outer part in an oscillatory manner but in a smooth 
way in the inner part. When more basis functions are used, the deviations are 

Fig. 4. Hydrogen atom: approxima- 
tion of the small component orbital 
1 s-  ( ) by 3 p-Gauss ians  ( -  - - )  and 
10 p-Gauss ians  (- - .) 
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reduced to a comparable extent in both regions. In the case of 1 s-, the p-Gaussians 
of a small set are positioned in the outer part. The additional p-functions in the 
larger set mainly correct the wrong limiting functional form for r -  0, shifting 
the region of large deviations to smaller r values. Evidently, the RMS errors for 
g-  are much larger and decrease less with m than those for g+. 

Note that indeed the orbitals ls + and l s -  are almost constant for small r, as 
stated in Sect. 3. The singular behaviour due to r ~'min-1 is not yet discernible at 
the value of In rmin which has been chosen in order to cut off the region around 
the nucleus. 

4.2. Choice of the expansion length for the large and small components 

Comparison of the slope of the line segments connecting the exponent values in 
Figs. 1 and 2 shows that for a small expansion length the slopes of the approxima- 
tions g+ and g-  deviate from each other to a lesser extent than for a large one. 
This means that for large sets the values of the exponents of the inner p-functions 
"run away" from those of the corresponding s-functions. This fact induces small 
matrix elements with respect to t~/~, the operator coupling the large and small 
component in the kinetic energy matrix 

0 

here, ~ are the Pauli spin matrices and matrix representations are denoted by 
operators enclosed in square brackets. As a consequence, small kinetic energy 
eigenvalues arise which cause severe numerical difficulties in calculations based 
on the large-c and the modified kinetic energy approach. Firstly, the (unphysical) 
states having no or almost no kinetic energy are usually strongly intermingled 
with occupied states. It is numerically difficult to preserve orthogonality between 
these two kinds of states and the SCF process may not converge in this case. 
Secondly, the evaluation of the inverse of [~/~] needed for the construction of 
the modified representation [~/~]mod [15] becomes numerically ill-conditioned. 

The conclusions for choosing the expansion lengths for the large and small 
component are as follows: 

(1) For small basis sets the expansion lengths can be chosen to be equal for both 
components, but for large sets more functions should be used for the small than 
for the large component. 

(2) The basis sets should be decoupled only to such an extent that the ~/~ overlap 
between large and small component functions remains appreciable. A measure 
for a minimal 6/~ overlap will be given in Sect. 4.3.2. 

4.3. Choice of the weighting function 

Two functions w(r) have been tried, namely w= 1 and w= 1/r. The values of 
the obtained parameters using these choices of w are shown in Table 3 for two 
hydrogen basis sets. The exponents of the w = 1/r approximation are larger and 
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Table 3. Approximation of the hydrogen ground state radial wavefunctions by s- and p-Gaussians: 
exponents a and coefficients c obtained for two weighting functions w 

Large component 

w=l  w = l / r  

Non-relativistic 
energy-optimized 
1 s orbital a 

Expansion 
length o~ s cs % Cs % c, 

2.22788 0 . 1 5 4 4 1 9  4 . 4 9 1 7 2  0.0810391 4.50038 0.07048 
0.405794 0 .535640  0 .610086  0 .457177  0 .681277  0.40789 
0.109821 0 .444903  0 .136959  0 .596224  0 .151374  0.64767 
5.21760 10.0567329 1 2 . 1 9 1 8  0 .0240949 13.3615 0.01906 
0.954702 0.260048 1.65720 0 . 1 6 9 5 7 5  2.01330 0.13424 
0.265218 0 .532664  0 .377861  0 .519260  0 .453757  0.47449 
0.0880216 0 .291535 0 .108195 0 .428341  0 .123317  0.50907 

Small component 

w=l w = l / r  

5.68341 0 .228167  18.6797 0.116801 
0.840236 0.543671 1.79121 0.440863 
0.182346 0 .510147  0 .278671  0.719803 

15.8252 0.108533 6 8 . 2 5 3 9  0.0446025 
2.35882 0 . 3 0 0 4 1 4  6.57945 0.182941 
0.529726 0.534588 1.05095 0.494705 
0.143035 0 .369789  0 .213906  0.587178 

a From [52] 

spread over a wider range than  those from w = 1; the coefficients are less un i formly  
distr ibuted,  be ing peaked at a few basis funct ions.  The numer ica l  constants  of 

the large c o m p o n e n t  from w = 1 / r  are similar  to those of the non-relat ivis t ic  l s  

orbital which have been  obta ined  from the energy criterion [52]. 

In  the fol lowing subsections,  the sets ob ta ined  from the two weighting funct ions  
will be compared  with respect to two quanti t ies:  the non-relat ivist ic  energy E,r 

and  the difference between the relativistic energy Er and  Enr, namely  AEr = 

E ~ -  Enr, which will be referred to as relativistic energy contr ibut ion.  

4.3.1. Non-relat ivis t ic  energies. The deviat ions be tween the var ia t ional  energy 
and  the l s l /2  eigenvalue for hydrogen or the 1S SCF energy for he l ium [53], 

- E n r  , are given in Table 4. The values of ~Enr are smaller  namely  ~Enr = Enr exact 

for the w = 1 / r  sets t han  those for the w = 1 sets; the former require about  one 
or two basis funct ions  less to get comparable  accuracy in the non-relat ivist ic  
energies. The w = 1 / r  sets give almost the same deviat ions as the non-relat ivist ic  
sets whose exponents  have been  determined from the min imiza t ion  of  the energy 
expectat ion value. Since fo r  c ~  the large c ompone n t  reduces to the non-  
relativistic orbital  and  since for low Z the relativistic effects on the wavefunct ions  
are small  [54], the energy criterion is used in an indirect  way to appraise the 
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Table 4. Hydrogen and helium atom; deviation t~Enr of the non-relativistic 
variational energy E,r from the Is eigenvalue or the ~S SCF total energy: 
E,r calculated with the relativistic sets obtained from two weighting 
functions w and with the energy-optimized non-relativistic sets 

Hydrogen [values in p, Ha] 
Number of Non-relativistic 
s-Gaussians w = 1 w = 1/r energy optimized a 

3 4989.1 3285.2 3021 
4 1505.8 812.0 723 
5 492.4 222.0 191 
6 172.8 66.1 60 
7 64.4 21.2 24 
8 25.3 7.2 9 
9 10.4 2.6 3 

10 4.4 1.00 c 1 
11 2.0 0.39 c 
12 0.9 0.16 c 
14 0.03 c 
E exact -500 000.00 

Helium [values in mHa] 
2 151.17 120.82 114.61 
3 45.63 28.86 26.00 
4 14.62 7.56 6.52 
5 4.99 2.16 1.79 
6 1.81 0.66 0.56 
7 0.69 0.22 0.19 
8 0.28 0.08 0.07 
9 0.12 0.03 0.03 

10 0.05 0.011 c 0.01 
11 0.02 0.004 c 
12 0.002 c 
14 0.0004 c 
E~ F -2861.6800 b 

a From [52] 
b From [53] 
c Segmentally contracted to 9 s-functions using the expansion coefficients 

from the large component 

q u a l i t y  o f  t h e  r e l a t i v i s t i c  b a s i s  sets .  I t  is c o n c l u d e d  t h a t  t h e  w = 1/r  se ts  a re  

p r e f e r a b l e  to  t h e  w = 1 se t s  b e c a u s e  s h o r t e r  e x p a n s i o n s  a re  n e e d e d  to  ge t  n o n -  

r e l a t i v i s t i c  e n e r g i e s  w i t h  t h e  s a m e  g i v e n  a c c u r a c y .  A f u r t h e r  a r g u m e n t  o f  c o m p u t a -  

t i o n a l  e c o n o m y  f a v o u r s  t h e  w = 1/r se t  in  m o l e c u l a r  c a l c u l a t i o n s :  f e w e r  b a s i s  

f u n c t i o n s  w i t h  s m a l l  e x p o n e n t s  e x t e n d  i n t o  t h e  b o n d i n g  r e g i o n  a n d ,  t h e r e f o r e ,  a 

s m a l l e r  n u m b e r  o f  l i n e a r  c o m b i n a t i o n  coe f f i c i en t s  m u s t  b e  d e t e r m i n e d  in  t h e  

v a r i a t i o n a l  c a l c u l a t i o n .  

4.3.2. Relativistic energy contribution. The v a l u e s  o f  t h e  r e l a t i v i s t i c  e n e r g y  c o n t r i -  

b u t i o n s  AEr  = Er - Enr c a l c u l a t e d  f o r  h y d r o g e n  a n d  h e l i u m  a re  s h o w n  in  T a b l e  

5. E x c e p t  f o r  t h e  e x t e n d e d  b a s i s  sets  t h e y  d e v i a t e  so  s t r o n g l y  f r o m  t h e  e x a c t  
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Table 5. Hydrogen and helium atom: relativistic energy contributions AEr, AE~ ~ ~  and AE m~ 
calculated with basis sets from two weighting functions w 

Number Hydrogen [values in ~Ha] 
of 
Gaussians AE, AE~ ~~176 •Er  m~ ~ffmin a 

s p w=l / r  w = l  w=l/r  w = l  w=l / r  w = l  w=l / r  w = l  

3 3 --t4 726.3 --7 165.2 
4 4 --3 150.5 --1 928.5 
5 5 --748.7 --482.1 
6 6 --235.8 --109.8 
7 7 --104.5 --28.6 
8 8 --51.8 --11.7 
9 9 --26.2 --8.31 

10 10 --14.9b --7.48 
11 11 --10.0 b --7.13 
12 12 --8.15 b --6.93 
10 14 b --8.15 
12 14 b --7.17 
14 18 b --6.72 
A Eerxact -6.657 
3 3 -119.28 -65.38 
4 4 -25.61 -16.86 
5 5 -6.70 -4.07 
6 6 -2.52 -0.97 
7 7 -1.23 -0.31 
8 8 -0.63 -0.18 
9 9 -0.34 -0.15 

10 l0 b -0.22 -0.14 
11 11 b --0.17 --0.14 
12 16b --0.136 
14 20b --0,133 
AE, = E~ ~ 

- E r  nF -0.13334 

-6.551 -6.181 -6.033 -5.387 2 . 8 6 - 1  4 . 0 8 - 1  
-6.308 -6.378 -6.222 -6.024 9 , 7 3 - 2  2 . 6 9 - 1  
-6.470 -6.448 -6,562 -6.341 2 , 1 0 - 2  1 .41 -1  
-6.577 -6.518 -6,583 -6.487 3 . 2 9 - 3  5 . 6 5 - 2  
-6.628 -6.657 -6.648 -6.567 4 . 0 4 - 4  1 . 8 2 - 2  
-6.646 -6.610 -6,645 -6.608 4 . 0 2 - 5  4 . 9 8 - 3  
-6.652 -6.630 -6.656 -6.630 3 . 3 2 - 6  1 . 1 9 - 3  
-6.656b -6.642 --6,660b --6.642 2.13 --5b2.50 --4 
--6.656b --6.648 --6,659b --6.648 3,29 --568.07 --6 
--6.657b --6.652 --6.660b --6.652 4.63 --5b 
--6.656 --6.656 1.90 --1 
--6.657 --6.657 2.63 --3 
--6.657 --6.656 2.02 --2 

-0.1231 -0.1151 -0.1185 -0.0973 3.09 -1 5.35 -1 
-0.1218 -0.1218 -0.1192 -0.1133 8 . 4 9 - 2  3 . 1 3 - 1  
-0.1277 -0.1252 -0.1318 -0.1229 1 . 5 8 - 2  1 .43 -1  
-0.1310 -0.1283 -0.1312 -0.1275 2 . 2 2 - 3  5 . 1 1 - 2  
-0.1325 -0.1304 -0.1334 -0.1303 2 . 4 8 - 4  1 . 5 1 - 2  
-0.1331 -0.1317 -0.1331 -0.1316 2 . 2 7 - 5  3 . 8 6 - 3  
-0.1332 -0.1324 -0.1334 -0.1324 1.74 -6 ,  8.66 - 4  
-0.1333 -0.1328 -0.1335 -0.1327 1.24 -5  1.73 - 4  
-0.1334 -0.1331 -0.1335 -0.1347 2.03 -5  3.11 -5  
-0.1334 -0.1334 6.77 - 2  
-0.1333 -0.1334 1.33 -1  

a Smallest non-zero eigenvalue of ~/~ matrix representation (absolute value); the decadic exponent 
is separated by a blank space from the number 

b Segmentally contracted to 9 s- and 9 p-functions 

v a l u e s  t h a t  t h e  o r d e r  o f  m a g n i t u d e  o f  t h e  r e l a t i v i s t i c  ef fec t  c a n n o t  b e  e s t i m a t e d .  

T h i s  f ac t  m a k e s  t h e  s l i gh t l y  b e t t e r  p e r f o r m a n c e  o f  t h e  w = 1 sets  in  c o m p a r i s o n  

w i t h  t h e  w = 1/r  sets  i r r e l e v a n t .  H o w e v e r ,  t h e  v a l u e s  o f  AE~ ~ = E r -  E~ -'~176 as 

we l l  as t h o s e  o f  A E ~  ~ = E r e~  Enr c l e a r l y  i n d i c a t e  t h a t  t h e  w = 1/r  se ts  a re  to  

b e  p r e f e r r e d ,  s i n c e  t h e y  l e a d  to  a f a s t e r  c o n v e r g e n c e  t o w a r d s  t h e  e x a c t  va lue s .  

T h e  s m a l l e s t  n o n - z e r o  e i g e n v a l u e  o f  [~/~] w h o s e  a b s o l u t e  v a l u e  ~JOmin is s h o w n  

in  t h e  l a s t  t w o  c o l u m n s  o f  T a b l e  5 i l l u s t r a t e s  n u m e r i c a l l y  t h e  q u a l i t a t i v e  a r g u m e n t s  

g i v e n  in  Sect .  4.2 f o r  c h o o s i n g  t h e  e x p a n s i o n  l e n g t h  m a n d  rn '  f o r  t h e  l a r g e  a n d  

s m a l l  c o m p o n e n t s ,  r e s p e c t i v e l y .  F o r  m = m ' ,  ~ffmin b e c o m e s  s m a l l e r  w i t h  i n c r e a s -  

ing  rn s i n c e  t h e  l a r g e s t  e x p o n e n t  a l  i n c r e a s e s  m o r e  s t r o n g l y  t h a n  a~,+ as s h o w n  

in  Figs .  1 a n d  2 f o r  t h e  w = 1/r  sets .  W h e n  t h e  e x p o n e n t s  o f  t h e  w = 1 se ts  a re  



178 F. Mark 

plotted in analogous diagrams, their line segments have smaller slopes and the 
a l  and a l  values "run away" to a lesser extent. As a consequence, O'Prni n is larger 
for given m and decreases slower with m than in the case of the w = 1/r  sets. A 
much better matching of the exponents for the s- and p-functions than for a 
choice m = m' is obtained, when a given set for the large component is combined 
with a larger one for the small component. In the case of the hydrogen 10s,14p 
w -- 1/r  set, for example, the line segments for the outermost 9 s- and 9 p-functions 
are almost parallel (see Figs. 1 and 2). If  these functions are held uncoupled, a 
particularly large value of @rain results, which is to be contrasted to that from 
the 9s,9p set: here a value smaller by 5 orders of magnitude is obtained and 
quadruple precision arithmetic is required to calculate [~ff]mod. Generally, the 
quantity ~i6min turned out to be a suitable guideline for combining/-subsets and 
for fixing the extent of decoupling: the value of t~p~in should not fall below a 
threshold value of  5 x 10 -4. 

The extended sets which include a larger number of p- than s-functions have 
been used in calculations on the H2 molecule [55] approaching closely the DF 
limit [56] and in a relativistic configuration interaction treatment of the electron 
correlation in the He atom [57]. 

4.3.3. Selection o f  the w = 1 / r  sets for  use in relativistic molecular calculations. Sum- 
marizing the results outlined in the preceding subsections, the following arguments 
are in favour of the basis sets which are obtained with the weighting function 
w = 1/r: compared with the w = 1 set, 

(1) they are computationally more economic since they need shorter expansions 
to determine relativistic energy effects and they require less decoupling; 

(2) they give lower non-relativistic energies; 

(3) their orbital exponents and expansion coefficients are more similar to those 
of  the energy-optimized non-relativistic sets. 

The weighting function w = 1 / r  was also chosen by Bardo and Ruedenberg [50] 
for deriving non-relativistic even-tempered basis sets. Of  all powers of  r, w = 1/r  
was the optimal weighting function to reproduce SCF energies. 

5. Basis  sets for the atoms lithium to neon 

5.1. The iterative self-consistent f i t  procedure 

For the atomic systems considered here ranging from three to ten electrons, the 
one-electron states lsl/2, 2Sl/2, 2pl/2 and 2p3/2 have to be approximated. Inspec- 
tion of Table 1 shows that Is +, 2s § and 2p-  are coupled to an angular function 
of s-symmetry. These three orbitals will be expanded into one set of basis functions 
with h - - 0 ;  they will have the same exponents but comprise different linear 
combination coefficients. Similarly, all orbitals coupled to an angular function 
of p-symmetry, namely l s - ,  2s-,  2p~(/2 and 2p~/2, will be expanded into one 
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common set with A = 1. Finally, the orbital 2p3/2 which is linked to an angular 
function of  d-symmetry is expanded into a third set with A = 2. 

An extension of  the fit procedure is required for the s- and p-sets, since for a 
chosen expansion length m and k orbitals to be fitted, m exponents and k x m 
coefficients have to be determined. The following strategy has been adopted in 
these cases: the basis functions are divided into groups using the criterion to 
which of the k orbitals they contribute most. Then, the exponents of  a particular 
group are adjusted by minimizing the functional (12) for that orbital to which 
the group has been associated, together with the m - 1 coefficients; one coefficient 
is fixed by the normalization condition (9). Starting with the new values for the 
exponents,  those of  the next group are optimized, and so on, until all groups are 
exhausted. This cycle is repeated, until the relative changes in the values of  all 
exponents and all coefficients become sufficiently small. 

The criterion adopted for the partitioning of  the basis functions into groups will 
be illustrated by a specific example, the neon atom. 

Figure 5 shows plots of  the radial functions Pls--, P2s § and Q2p- (all renormalized 
to unity) and plots of  their integrated radial densities ~:~(r) = So d~2r2 dr. The 
s-functions of  the basis are arranged in decreasing magnitude of  the (initially 
guessed) exponents; they are divided segmentally into 3 groups of t, u and v 
functions, where m = t + u + v, in the following way: 

(1) The inner region is mainly filled with density from l s  § Hence, the t functions 
with mean radii fls less or approximately equal to the value rmax(1S +) of  the 
maximum of Ply+ are assigned to the first group. This choice does not bias the 
representations of  the inner part  of  2s + and of the left wing of 2p- ;  these orbitals 
are of  similar shape as ls  § in the region extending up to rmax(ls+). 
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Fig. 5. Neon atom: renormalized radial functions Pis+, P2s + and Q2p- and integrated densities 
tr(r) =So p2r2 dr or o'(r)=So Q 2r2 dr 
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(2) In the range between the maximum of Ply+ and the outer maximum of P2s + 
a single function forming the second group is positioned, which accounts for the 
skewness of the Q2p- function and the broadening of the maximum in comparison 
with Ply+. 

(3) The exponents of the remaining v functions having the smallest exponents 
and forming the third group are determined by minimizing (12) for 2s § At least 
two functions have to be provided for this group, when besides the outer P2~+ 
maximum the node in the 2p- orbital has to be represented properly. Hence, at 
least four functions are needed to describe the functional behaviour of the 
s-orbitals. However, since only a relatively small amount of charge, namely 
15.6%, is contained in the region beyond this node of 2p-, a minimal basis of 3 
(contracted) s-orbitals may be sufficient to describe the gross features of the 
spinors of s-symmetry, namely the s-core function, an intermediate function and 
the s-valence function. 

The radial functions Qls-, Q2s-, P2p~/2 and P2p~/2 and their integrated radial 
densities are plotted in Fig. 6. Since the differences between 2p,+/2 and 2p-~/2 are 
marginal except very near to the nucleus (see the parameters of the power series 
solution in Table 2), the same exponents are used for both of them and the basis 
functions are divided into three groups only according to m ' -  t '+ u '+ v'. These 
groups are sufficiently well separated, so that the exponents of the first t' functions 
can be determined from a fit to 1 s-, those of the last v' functions from + 2p312 and 
the exponent of the intermediate function (u '=  1) from 2s-. Only the coefficients 
are optimized for + 2pl/2. The minimal p-basis consists of three (contracted) 
functions, namely the p-core function, and intermediate function and the p- 
valence function. 
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Fig. 6. Neon atom: renormalized radial functions Qts-, Q2s- and P2p~/2 and integrated densities 
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5.2. Construction of relativistic atomic basis sets 

Atomic sets for Li and Be consist of an s- and p-subset, those for B to Ne contain 
in addition a d-subset. Among the many combinatorial possibilities to form 
atomic sets, in the following three combinations will be selected for Ne by 
considering the relativistic effect on the total energy and the spin-orbit splitting 
of the 2p orbital as probes for the core and valence shells, respectively. The 
closed-shell Ne atom is taken as an example, since our computer program cannot 
handle relativistic open-shell cases. However, the three Ne sets,classified as small, 
medium and large are expected to be representative for the atoms B to F, since 
the basis set parameters change gradually along this series. 

As a preselection, sets with an equal number of s- and p-functions or with one 
p-function in excess have been combined. Slightly more than half as many 
d-functions were added to these functions. The so-obtained atomic sets labelled 
Ba to BI are listed in Table 6; the notation for the s- and p-subsets indicates the 
grouping of  the basis functions in the self-consistent fit procedure. 

In the large-c approach a correction term AE~ ~ E~ - '~176 E,~ is subtracted from 
the relativistic energy contribution AE~-'~176 ~ and a correction 
term A~"  = e(p~:~ ~ e(p~72 ~) from the spin-orbit  splitting Ae~g'~= 
{ e ( p 3 / 2 ) - - e ( p l / 2 )  }-Asco ~ which approximately compensate for the incomplete- 
ness of the basis. The values of these corrections which are given in Table 6 are 
large for all sets Ba to Bi. Since the calculated relativistic effects considerably 

Table 6. SCF calculations on Neon atom using different basis sets: errors in total energy 6E r and 
3 E . .  relativistic energy contributions AE~ "~176 and AE~, ~ spin-orbit splitting Ae~o ~176 and Ae~ ~ and 
large-c corrections AE~ ~ and Ae~ ~ [values in mHa] ~ 

Basis 
set Subsets of s-, p-, 
label d-Gaussians 6Er ~E.r AE~ ~ AECr ~ Aes'o ~176 AesC~ rr AE~ ~ Aes m~ 

Ba 4 + 1 + 2 , 4 + 1 + 2 , 4  116.36 233.01 -129.38 -1132.14 4.79 1.04 
Bb 4 + 1 + 2 , 5 + 1 + 2 , 4  -266.35 195.83 -145.11 -461.93 4.56 -2.21 
Be 5 + 1 + 2 , 4 + 1 + 3 , 5 - 1 3 8 . 9 2  39.22 -145.51 -177.50 4.56 -12.42 
Bd 5 + 1 + 2 , 5 + 1 + 2 , 5  r 134.90 
Be 6 + 1 + 2 , 5 + 1 + 3 , 5  -78.17 10.56 -145.76 -95.85 4.92 -0.65 
Bf 6 + 1 + 2 , 6 + 1 + 2 , 5  -109.90 106.62 -142.25 -219.15 4.50 9.34 
Bg 6 + 1 + 3 , 5 + 1 + 4 , 6  -28.26 7.27 -144.61 -35.79 4.68 1.84 
Bh 6 + 1 + 3 , 6 + 1 + 3 , 6  -24.10 12.88 -144.31 -37.54 4.59 -1.33 
Bi 7 + 1 + 2 , 6 + 1 + 3 , 6  -25.67 10.58 -144.53 -36.59 4.61 -4.43 
Bj 7 + 1 + 2 , 5 + 1 + 4 , 6  -30.45 4.92 -145.17 -35.07 4.63 0.70 
Bk 7 + 1 + 3 , 6 + 1 + 4 , 7  -10.19 2.99 -145.56 -13.50 4.62 -0.49 
BI 8 + 1 + 3 , 7 + 1 + 4 , 7  -5.52 1.39 -144.73 -7.04 4.62 -0.06 
Exact SCF values E r = -128691.97 E,r = -128547.10 AEr = -144.87 

-145.12 4.25 
-144.10 4.35 
-144.13 4.52 
-144.99 4.56 
-144.41 4.52 d 

--145.55 4.37 a 
--144.33 4.56 
--145.45 4.55 
--144.77 4.54 
--144.71 4.56 
--144.99 4.56 
--144.80 4.56 
Ae~o = 4.56 

a The notation for the s- and p-subsets and the symbols are explained in Sect. 5.1 and 5.2, respectively 
b The two innermost s- and p-Gaussians have been contracted in the calculations by the modified 

kinetic energy approach [15] 

~ No SCF convergence could be achieved in the large-c calculation 
d The 6d-subset has been used in the calculations by the modified kinetic energy approach 
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scatter from set to set and depend strongly on the degree of the contraction, these 
sets are not adequate for use in large-c calculations. A fairly balanced description 
of the inner and outer shells has been achieved for set Bj, where moderate values 
for both correction terms are obtained. Furthermore, the values are the smallest 
among the four sets Bg to Bj which are combinations of subsets of the same size 
and which correspond to different least-squares minima. Hence, Bj is proposed 
to be used as medium-size set. Upon enlarging further the basis, the values of 
the correction terms and of  the total energy errors decrease, but without showing 
a discriminating jump. Thus, set Bi is termed large even if its sizeable value of 
AE~ ~ indicates that this basis set is still far from being complete and according 
to the experience from the expansion of the hydrogen and helium orbitals a 
larger p- and d-subset would be desirable. 

In the modified kinetic energy approach, the error in the total non-relativistic 
energy is used as a further criterion besides A E  m~ and Aesmo ~ The value of 6 E ,  r 

is drastically diminished when going from set Ba to Bc at the expense of  a modest 
increase in computational effort due to the additional basis functions (see Table 
6). Hence, Bc is proposed as a small basis set. It is to be preferred over Bd having 
a different p-subset which gives less energy gain. Furthermore, the value of O~pmin 
is larger for Bc than for Bd (4.9 x 10 -4 versus 2.5 x 10-5). A marked energy decrease 
is obtained for set Bj which in addition has the largest ~ffmin value among all 
multiple minima combinations Bg to Bj. Hence, set Bj comprising one more 
function in the core and in the valence shell than the small set Bc will be classified 
as medium, in agreement with the conclusions from the large-c calculations. B1 
is recommended as large set. Compared with the medium set the s-core and 
valence shell are augmented each by one s-function whereas the two additional 
p-functions enter into the p-core only. However, the relative large error in A E r  m~ 
in contrast to the close agreement for Aesmo ~ indicates that the basis for the s- 
and p-core is still not large enough. 

5.3. Relat iv is t ic  contraction schemes  

In order to derive contraction schemes appropriate for the modified kinetic energy 
approach, first some characteristic properties of the relativistic sets will be 
demonstrated for the case of the small Ne set. It is composed of the subsets 
(5+ 1+2)s,  (4+ 1+3)p, 4d and its parameters are given in Table 7; an asterisk 
in front of  the ith coefficient of an orbital indicates that the ith exponent has 
been optimized for that particular orbital. Dujineveldt's non-relativistic 8s,4p 
[58] set is also shown which in comparison with the relativistic set yields a slightly 
higher non-relativistic energy (E,r  = -128.4817 Ha vs. -128.5079 Ha) but a virial 
ratio closer to the exact value (-1.99998 vs. -2.00043). 

The values for the exponents of the relativistic set form a more regular progression 
than those of  the non-relativistic set, where a gap exists between the values of 
the second and third to the last exponent. This gap between the basis functions 
describing the 1 s and the outer 2s lobe which is observable in many non-relativistic 
sets (see, e.g., [58]) is filled by a function having appreciable weight in the 2p-  
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Table 7. Gaussian basis sets for the neon atom: orbital exponents ~ and expansion coefficients c of 
the relativistic (5+ 1 +2)s, (5 + 1 +3)p, 4d set and of Duijneveldt's non-relativistic 8s,4p set a'b 

a~ c(ls+) c(2s+) c(2p~2) ~s c( ls)  c(2s) 

5.31 +3 *3.95 - 3  9.62 - 4  1.27 -3  8.91 +3 1 . 7 6 - 3  4.16 - 4  
7.04 +2 *3.06 - 2  7.06 - 3  9.84 - 3  1.34 +3 1.34 - 2  3.13 -3  
1.59 +2 "1.37 -1  3.54 - 2  4.65 - 2  3.04 +2 6.61 - 2  1.64 - 2  
4.58 +1 "3.71 -1  1.01 -1  1.45 -1  8.57 +1 2.26 -1  5.70 - 2  
1.52 +1 *4.77 -1  2.13 -1  3.28 -1  2.75 +1 4.63 -1  1.58 -1  
5.20 +0 1.37 -1  1.19 - 2  *4.75 -1  9.45 +0 3.62 -1  1.61 -1  
1.45 +0 -3.60 -3  *-6.92 -1 2.44 -1  1.71 +0 2.58 - 2  -5.44 -1  
4.33 -1  2.60 -3  *-4.78 -1  -1.39 - 1  5.02 -1  -5.07 - 3  -5.89 -1  

% c(ls-) c(2s-) e(2p+/~) c(2p~/~) ~p c(2p) 

2.00 +4 "2.01 --2 1.41 --2 9.04 --6 5.35 --6 
1.93 +3 *8.42 --2 5.92 --2 2.50 7"5 9.11 --6 
3.09 +2 *2.55 --1 1.85 --1 1.28 --3 1.22 --3 
6.44 +1 *5.22 --1 4.19 --1 1.04 --2 1.03 --2 
1.59 +1 4.34 --1 *5.27 --1 8.69 --2 8.62 --2 
4.07 +0 3.10 --2 --4.73 --2 3.34 --1 *3.33 --1 
1.17 +0 4.27 --3 --4.42 --1 5.20 --1 *5.20 --1 
3.09 --1 --2.34 --3 --8.81 --2 3.17 --1 "3.19 --1 

2.84 +1 4,60 --2 
6.28 +0 2.40 --1 
1.70 +0 5.09 --1 
4.32 --1 4.56 --1 

ad c(2p3/2) 

7.31 +1 8 . 2 0 - 2  
1.34 +1 3.15 -1  
3.27 +0 5.68 -1  
7.65 +1 4.16 -1  

From [58] 

b For easier legibility, the numbers are rounded to three digits and the decimal exponent is given by 
:~ n. An asterisk preceding the coefficient of  an orbital indicates that the exponent has been optimized 
for that particular orbital 

orbital only. Similarly to the s-exponents, the p-exponents are smaller in magni- 
tude compared with the energy-optimized non-relativistic ones. They increase, 
however, to very large values in order to emulate the "hard" p-functions. The 
d-set comprises exponents being within a range which is common for polarization 
functions in non-relativistic calculations, but they reach much larger values. 

Now we consider the expansion coefficients, and firstly those of  the valence shell. 
The outermost s-functions which model the valence s-shell have very small 
coefficients in Is +, but contribute appreciably and with different sign to 2p-.  
Thus, for Is + and 2s + a similar situation pertains as in the non-relativistic case. 
Large errors, however, are introduced for 2p-  if the outermost s-functions are 
coupled to a single group according to their weight in 2s § Similarly, a complete 
contraction of  the p-valence shell conflicts with the different characteristics of 
the large and small components. The outer lobe of the 2s -  orbital is only poorly 
described when the contraction coefficients of the outermost p-functions are taken 
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from the 2p3+/2 orbital. As a consequence, a minimal basis contraction for the 
valence shells as realized for set Sa gives only a crude estimate of the relativistic 
energy contribution and of the spin-orbit splitting (see Table 8). The values of 
these quantities are improved by splitting the valence shell (set Sb) whereas, as 
expected, the non-relativistic energy is only marginally lowered. It should be 
noted, however, that the close agreement with the DF values is accidental, since 
the core shells are too strongly co~pled. This will be shown next, when we 
concentrate on the contraction of the s- and p-core. 

The coefficients o f  the innermost s-functions parallel each other for all three 
orbitals l s  § 2s § and 2p- ,  and even more for the larger s-sets. With decreasing 
magnitude of  the orbital exponents the ratios of  adjacent coefficients differ more 
and more. Since those for 2p-  deviate more from l s  § than those for 2s § the 
s-core has to be decoupled at least as strongly as in the non-relativistic case. The 
p-core orbitals show completely different behaviour in their large and small 

Table 8. SCt calculations on the Ne  atom by the modified kinetic energy approach a using a small, 
a medium and a large set and different contraction schemes: errors in total energy 8Er m~ and BE,,, 
relativistic energy contribution A E ~  ~ and spin-orbit splitting Ae~o ~ [values in mHa] 

Basis set s-, p-, d-subsets contracted 
label to s', p', d '  functions b 6E~ ~ 6En, AE m~ Ae~o ~ 

Sa 5 + 1 + 2 ,  4 + 1 + 3 ,  3/3,3,1 c 158.99 155.44 -141.32 3.68 
Sb /4, 4, 2 a 153.27 153.15 -144.75 4.65 
Sc 5 + 1 + 2 ,  4 + 1 + 3 ,  4 /4 ,4 ,2  d 153.21 153.15 -144.81 4.62 
Sd /5, 5, 2 85.40 85.04 -144.51 4.09 
Se /5, 5, 3 84.90 85.04 -145.01 4.27 
Sf /6, 6, 3 43.56 42.87 -144.19 4.48 
Sg 5 + 1 + 2 ,  4 + 1 + 3 ,  5/6 ,6 ,3  43.56 42.87 -144.19 4.48 
Sh 5 + 1 + 2 ,  4 + 1 + 3 ,  5 /7 ,7 ,4  41.04 40.31 -144.14 4.52 
Basis set limit 39.22 
Ma 7 + 1 + 2 ,  5 + 1 + 4 ,  4 /6 ,6 ,3  41.56 41.43 -144.74 4.28 
Mb 7 + 1 + 2 ,  5 + 1 + 4 ,  5/6 ,6 ,3  41.54 41.43 -144.76 4.27 
Mc /7, 7, 4 7.24 7.13 -144.76 4.52 
Md 7 + 1 + 2 ,  5 + 1 + 4 ,  6 /7 ,7 ,4  7.24 7.13 -144.76 4.52 
Me /8, 8, 5 5.44 5.31 -144.75 4.55 
Mf  /9, 9, 6 5.26 5.11 -144.71 4.56 

Basis set limit 4.92 
La 8 + 1 + 3 ,  7 + 1 + 4 ,  7 /7 ,7 ,4  10.05 10.19 -145.01 4.50 
Lb /8, 8, 5 2.00 2.29 -145.16 4.55 
Lc /9, 9, 6 1.77 1.71 -144.80 4.56 

Basis set limit 1.39 
Exact SCF values 

Er = -128691.97 E,,,.= -128547.10 AEr= -144.87 Ae~o = 4.56 

a Ref. [15] 
b segmented contraction of the innermost functions 

as b and contraction of the outermost 2s- and 3p-functions 
d as b and splitting of the outermost 3p-functions according to 2, 1 
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components. The coefficients of the innermost p-functions for i s -  and 2s-  are 
to a good approximation constant multiples of each other. Since these high- 
exponent functions have very small weights in + + 2p3/2, 2pl/2 and they may be 
coupled with contraction coefficients taken from Is- .  Since the ratios of adjacent 
coefficients change much more strongly in 2p1+/2 and § 2p3/2- and correspondingly 
also in their non-relativistic 2p counterpart - than in the small component orbitals, 
the extent of p-contraction has to be smaller than suggested by the similarity 
between 1 s-  and 2s-. Thus, the basis functions of the outer s- and p-core should 
not be coupled, neither in the relativistic nor in the non-relativistic calculations. 

In the three sets Sb, Sd and Sf the s-core is successively decoupled from a single 
group of five functions into two and finally three groups; the p-core is held 
contracted to a single group of four functions in the first and second set and 
opened into two groups in the last one. Along this series, 6Enr drops sharply. 
The first decrease is due to the decoupling of the fifth s-function from the core. 
The second decrease mainly results from the splitting of the p-core. The splitting 
of the s-subset is of minor importance, since a contraction 5s,6p yields /~Enr = 
46.09 mHa which is only a small loss compared with set Sf having one s-group 
more. In contrast to the strong decoupling needed in the non-relativistic calcula- 
tions when weights from Is § and l s-  are used, the (5+ 1 +2)s , (4+ 1 +3)p set 
may be contracted to 5s,3p when the weights are taken from the non-relativistic 
ls  and 2p orbitals, and nevertheless the energy deviates by only 2.33 mHa from 
the basis set limit. Decoupling of the outer s- and p-core is also of strong influence 
on A~m~ and " mod ----r ~eso , as shown by the results for the sets Sc and Sd as well as 
for Se and Sf which pairwise have the same d-basis. 

Sets differing in the number of d-functions but having the same number of 
A r o o d  d-groups give almost the same values for AE m~ and aeso , as it can be seen 

from the following pairs Sb,Sc; Sf, Sg; Ma,Mb and Mc,Md. When the sets are 
too rigidly contracted, however, the calculated relativistic effects strongly scatter, 
as it is the case for the first and third pair, where values accidentally close and 
far off from the limits are obtained. 

Similarly, as for the small set, a minimal decoupling of  the core shells is also 
required for the medium and large set. There is a sharp reduction of ~Enr and 
of the errors in AE~ ~ and Ae m~ when going from Ma to Mc and from La to 
Lb. The ultimate convergence towards the basis set limits upon a gradually 
decoupling of the set is slow, as shown by Md ~ Me ~ Mf and Lb -~ Lc. 

Considering the different contractions of the small, medium and large atomic 
set, a fair compromise between accuracy in the calculated relativistic energy 
effects and degree of contraction is achieved for the sets Sf, Mc and Lb. 

A proposed strategy for choosing a contraction scheme for the relativistic sets 
may be summarized as follows: 

(1) At least a split basis is required for the s-, p- and d-valence shells; 

(2) the outer basis functions of the s- and p-core should not be contracted; 

(3) the d-set has to be flexibly decoupled while its expansion length is of minor 
importance. 
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6. Concluding remarks 

The expansion of relativistic orbitals into spherical Gaussians of the form 
r t exp ( - a r  2) offers the advantage that the basis set parameters can be used in 
computer programs based on Cartesian Gaussians whose angular behaviour is 
given just by r t times a spherical harmonic of  degree l or on their Gaussian lobe 
approximation [59]. However, there are definite disadvantages of Gaussian type 
basis functions compared to exponential type ones. Firstly, a large number of 
spherical Gaussians is needed in order to represent the "hard"  functions having 
an pre-exponential factor r (x-l) .  Thus, the evaluation of  the two-electron integrals 
becomes much more time-consuming in the relativistic than in the non-relativistic 
case. This is not only due to the large number of basis functions but also due to 
the large portion of functions with high/-values. Secondly, "hard"  STFs can be 
easily included in the basis set, since existing computer programs can be adapted 
to cover these types of functions [60, 13, 14]. In contrast, the formulae for the 
many-centre one- and two-electron integrals over "hard"  Cartesian Gaussians of 
the form exp (-ar2)x'yUzO/r have not yet been published. Furthermore, only 
approximations to Cartesian Gaussians of degree A can be constructed from 
Gaussian lobes [59]. Thirdly, ~/~ acting on a "normal"  STF does not only generate 
"normal"  but also "hard"  functions. Thus, the overlap with respect to 6/3 is large, 
when the large components  are expanded into "normal"  and the small com- 
ponents into "normal"  as well as "hard"  STFs, and less numerical problems 
from low kinetic energy states are to be expected. Indeed, the relation ~b- = 6/~+ 
has been adopted by McLean and Lee [13, 14] as a prescription to derive basis 
sets for the small component; see [32] for details on these sets which have been 
called kinetically balanced. In contrast to its effect upon an STF, ~ff operating 
on a "normal"  spherical Gaussian leads exclusively to functions of the same type. 

The large and the small components have been expanded into the same set of 
basis functions. Use of a common set simplifies the organization of the computer 
program to solve the DF equations. However, the problems related to the non- 
relativistic limit are exacerbated compared with expansions where different sets 
of  basis functions are used for both components. It has first been pointed out by 
McLean and Lee [13, 14] that completeness in the basis for the small component 
alone is sufficient to reduce the DF equations to the HFR equations in the limit 
c--> oo. The expansions (6) take  not advantage of  this less stringent requirement 
on the basis. Hence, the sets developed here are applicable in those approaches 
where completeness in the small component is enforced by some other means, 
e.g., by construction of a modified kinetic energy representation [15]. The sets 
are also appropriate when results of relativistic and quasi-non-relativistic calcula- 
tions are compared which employ the same basis in both cases, as it is done in 
the large-c approach. 

The optimal parameters which have been obtained from the least-squares criterion 
with the specific choice w = 1/r  of the weighting function closely resemble those 
obtained by minimizing the total energy of the corresponding non-relativistic 
functions to which the relativistic functions are reduced in the limit of an infinite 
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velocity of light. These basis sets have already been employed successfully in 
molecular calculations [15, 17; 18]. 

Computational details. The calculations have been performed using Gaussian 
lobes with an off-centre displacement AR = k/aX/2 and constants k=  0.03 and 
k = 0.06 for the p- and d-functions, respectively. The DF equations within scalar 
basis sets [ 11 ] have been transformed to a basis diagonalizing the f2 representation 
and solved after projecting out higher angular momentum functions not contained 
in the ground state determinant. The DF equations with modified kinetic energy 
representation [15] have been transformed to a basis diagonalizing [t~/~] and 
solved after projecting out functions having vanishing kinetic energy. A value of 
c = 137.03602 au for the velocity of light has been taken. 
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